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bounded units), continuity (an object moves along one 
connected path over space and time), and contact 
(objects must touch in order to influence each other’s 
motion). Even very young infants apply these principles 
to individuate objects and predict their motion but ini­
tially fail to properly apply other physical principles, 
such as gravitational and inertial constraints. The emer­
gence of these latter principles appears to hinge on 
experience—as children learn how particular objects 
behave in particular circumstances, they acquire piece­
meal knowledge that builds upon the core principles. 
Over the first years of life, children’s intuitions regard­
ing gravity and inertia become steadily more adult-like 
but remain inconsistent across scenarios (Kaiser, Prof­
fitt, & McCloskey, 1985). Likewise, children’s sensitivity 
to the features that discriminate objects (e.g., shape, 
size, or color) relies on experience with specific events. 
Young infants fail to make use of such cues to individu­
ate objects (Xu & Carey, 1996), and as infants learn 
about the attributes relevant for predicting an object’s 
behavior, they often do so in an event-specific fashion 
that fails to transfer to new scenarios (Wang, Baillar­
geon, & Paterson, 2005). By contrast, infants rarely 
display misconceptions about cohesion, continuity, and 
contact—these principles form the stable core of our 
physical knowledge that endures throughout develop­
ment and into adulthood.

How is children’s physical knowledge expanded and 
refined over the course of development? Baillargeon 
and colleagues have proposed that children’s physical 
representations are enriched through rule learning via 
explanation-based processes (Baillargeon, 2002; Wang, 
Zhang, & Baillargeon, 2016). Infants must first notice 
that two events for which they have similar models have 
contrastive outcomes that cannot be predicted based 
on current knowledge. They then search for the condi­
tions that lead to each outcome, engaging in hypothesis-
testing behaviors with objects that violated their 
expectations (Stahl & Feigenson, 2015). Finally, infants 
attempt to generate an explanation to be incorporated 
as a new variable that differentiates the outcomes of the 

abstract  To navigate and interact with the world, we must 
have an intuitive grasp of its physical structure and dynamics. 
Where should I push to open this door? Can I place this box 
on top of the others, or will the stack be unstable? Although 
the natural laws governing physical behavior can be chal­
lenging to comprehend in a mathematical sense, we implic­
itly employ approximate physical models in everyday life to 
predict objects’ physical behaviors and adjust our actions 
accordingly. Our commonsense understanding of how the 
world will behave—termed naive physics—emerges early in 
life and is expanded and refined by experience throughout 
our development and into adulthood. We draw on naive phys­
ics in nearly all aspects of everyday life, and doing so often 
feels effortless and automatic. We “see” that a piece of furni­
ture is too heavy to lift or that a surface is too slippery to walk 
on safely. Just how accurate are our physical intuitions? Do we 
carry out rich mental simulations of physical dynamics, or do 
we rely on heuristics that are effective in many scenarios but 
could break down in others? What brain machinery supports 
naive physics? This chapter explores these questions from 
the vantage points of behavioral and neuroimaging research.

The Development of Physical Cognition in Infancy

Contrary to the once popular Piagetian notion that 
young infants understand little about the physical 
structure of the world, research over the past several 
decades has demonstrated that even in the first months 
of life, infants have basic expectations about how 
objects will behave. At just 2.5 months old, infants are 
surprised when an object seems to jump from one loca­
tion to another without traversing the space in between, 
or when one object seems to pass through another. 
What are the building blocks of these early-emerging 
physical intuitions? Spelke and colleagues (Spelke, 
Breinlinger, Macomber, & Jacobson, 1992; Spelke & 
Kinzler, 2007) argue that we are born with an innate 
knowledge of some basic principles governing object 
motion, and this knowledge provides the mental scaf­
folding for learning more sophisticated physical con­
cepts over the course of development. They propose 
that the core system of object representation comprises 
three principles: cohesion (objects move as connected, 
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dynamics across a range of scenarios? And what brain 
machinery supports naive physics? The remainder of 
this chapter explores these questions.

Physical Inference Abilities in Adults

In adulthood, the apparent effortlessness with which we 
predict and reason about object dynamics in daily life 
belies some striking misconceptions about physical 
behavior that are revealed upon closer inspection. A 
classic example comes from McCloskey, Caramazza, and 
Green (1980), where college students were asked to draw 
the trajectory of a ball as it exited a curved tube. Many 
participants drew a curved path, indicating curvilinear 
motion even in the absence of any external forces. Simi­
larly, many participants indicated that a ball being 
twirled at the end of a string would follow a curved path 
when the string was cut. These findings show that 
people’s predictions can be starkly at odds with the phys­
ical behaviors they see in the world every day (and in 
fact, people perceive straight paths to be more natural 
looking than curved ones when viewing, rather than 
diagramming, the outcomes of the same scenarios (Kai­
ser, Proffitt, & Anderson, 1985). In a number of other 
scenarios, such as when a ball is released from a pendu­
lum (Caramazza, McCloskey, & Green, 1981) or dropped 
by someone who is walking (McCloskey, Washburn, & 
Felch, 1983), people draw trajectories that are inconsis­
tent with Newtonian dynamics. People also tend to make 
systematic errors when predicting how a liquid will be 
oriented within a tilted container (Vasta & Liben, 1996) 
or when indicating which of two objects is heavier after 
observing a collision between them (Gilden & Proffitt, 
1989; Todd & Warren, 1982). While this is a surprising 
pattern of errors to observe in adults, it is consistent with 
the notion that physical knowledge is acquired in an 
event-specific fashion. Just as with infants, adults rarely 
hold misconceptions about the principles of cohesion, 
continuity, and contact, but judgments of object motion 
that incorporate gravity and inertia can be highly idio­
syncratic. For example, while people tend to make errors 
regarding the path that a ball will take as it exits a 
curved tube, they are much more accurate at indicating 
how water will exit the same tube (Kaiser, Jonides, & 
Alexander, 1986), perhaps as a result of more experience 
with the latter scenario. These errors seem to suggest 
that even in adulthood, we are unable to integrate our 
learning about various physical scenarios into a unified 
model of object behavior. Instead, people might con­
struct ad hoc theories of physical behaviors on the fly 
(Cook & Breedin, 1994) or rely on an incorrect, non-
Newtonian model of physics (Clement, 1982; McCloskey, 
Caramazza, & Green, 1980).

two events. This framework supports the learning of 
event categories (e.g., occlusion, support, collision, and 
containment) and the relevant variables for interpret­
ing those events (e.g., the shapes and sizes of objects 
and the spatial relationships between them). Because 
the same variable can be learned separately and at dif­
ferent times for different events, knowledge about a 
given variable does not always transfer across event 
categories. For example, 9-month-old infants attend to 
the height of an object placed in a container (and are 
surprised when a tall object fits completely in a short 
container) but not the height of an object placed in a 
tube, even when the containment and tube events are 
visually identical (Wang, Baillargeon, & Paterson, 2005). 
Hence, most 9-month-olds have not yet identified 
height as a relevant variable in tube events, even though 
they have done so for containment events (perhaps 
because of more experience with containers). After 
further revision based on experience, infants’ rules 
become sufficiently abstract to unify variables learned 
under different conditions.

Even before the 1-year mark, infants acquire a broad 
and diverse catalog of physical knowledge in a systematic 
fashion. For example, infants incrementally learn increas­
ingly sophisticated notions of support. As early as 3 
months old, infants demonstrate an understanding that 
two objects must be in contact for one to support the 
other. Infants then come to understand that the spatial 
arrangement of the objects matters (the supported object 
must be on top), and ultimately, at about 12 months old, 
they understand roughly where an object’s center of mass 
must be located relative to a supporting surface in order 
to be stable (Baillargeon, 1998). Between 5 and 7 months, 
infants also begin to display expectations about how fall­
ing objects will accelerate, and they become sensitive to 
the causal roles of one object striking and launching 
another. And infants’ learning is not limited to rigid 
body interactions. By 5 months old, most infants are able 
to differentiate a liquid from a solid on the basis of move­
ment cues and cohesiveness (Hespos, Ferry, Anderson, 
Hollenbeck, & Rips, 2016) and have expectations for how 
nonsolid substances will accumulate when poured 
(Anderson, Hespos, & Rips, 2018). By about 11 months 
old, infants can infer the weight of an object based on 
how much it compresses a soft material (Hauf, Paulus, & 
Baillargeon, 2012).

The above examples point to a systematic acquisition 
of physical knowledge during the first years of life, built 
around a stable core of object-motion principles. Just 
how sophisticated do our physical inference abilities 
become in adulthood? Do we ultimately rely on a cata­
log of situation-specific physical knowledge, or can we 
employ more generalized processes to predict physical 
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dynamics (Battaglia, Hamrick, & Tenenbaum, 2013; 
Ullman, Spelke, Battaglia, & Tenenbaum, 2017). Here, 
mental simulation refers to playing physical dynamics 
forward in time as a video game physics engine would. 
Based on an initial scene configuration (e.g., scene lay­
out, object geometry, material properties, and veloci­
ties), a mental simulation would step forward through 
successive states of the scene as physical interactions 
play out. Such a simulation would likely operate under 
a number of simplifying assumptions to make efficient 
simulation tractable, just as video game physics engines 
do. For example, collision detection may be based on sim­
plified information about an object’s three-dimensional 
shape (e.g., its convex hull) rather than fine-scaled 
geometry, and objects may only be actively simulated 
when in motion (akin to “sleep” and “wake” states in a 
video game physics engine). The end state of a simula­
tion could answer questions such as “Where will the ball 
land?,” and simulating a scenario multiple times over a 
range of initial parameters could answer questions such 
as “How should I roll this ball so it will end up in the 
desired location?” Importantly, this conception of 
mental simulation does not in itself implicate any partic­
ular brain areas or timescales (simulation need not pro­
gress in real time) and does not imply that simulation 
outcomes are always accurate or free of bias. Indeed, 
recent work has shown that in a number of scenarios 
both the successes and failures in human judgments are 
modeled well by probabilistic physics simulations that 
make similar patterns of errors (Bates, Battaglia, 
Yildirim, & Tenenbaum, 2015; Battaglia, Hamrick, & 
Tenenbaum, 2013). Hegarty (2004) has also argued in 
favor of a mental simulation account of physical infer­
ence based on tasks in which participants reason about 
multicomponent physical systems (e.g., a rope connected 
to a weight, threaded through a number of pulleys). Par­
ticipants are slower to make judgments about compo­
nents that are farther from the beginning of the causal 
chain, which suggests they step sequentially through the 
system to determine its behavior rather than simulta­
neously evaluating the components as a whole.

While probabilistic physics simulations provide good 
models of human performance under many condi­
tions, there is ample reason to question whether mental 
simulation is the sole or primary means by which we 
form physical predictions in many everyday situations. 
Davis and Marcus (2016) point out that there are many 
scenarios in which physical outcomes are difficult or 
inefficient to infer through simulation but are trivial to 
infer from a rule-based standpoint. For example, to 
know whether water will spill out of a canteen, it is suf­
ficient simply to know whether the canteen is open or 
closed. Mental simulation of the water’s motion within 

A puzzle remains, though: How are we able to interact 
so effectively with our everyday environments if our phys­
ical predictions draw on idiosyncratic and sometimes 
incorrect conceptions about object behavior? Recent 
studies that have tested how people interact with moving 
objects shed some light on this matter. Using displays like 
those in Caramazza, McCloskey, and Green (1981), 
Smith, Battaglia, and Vul (2013) asked people to predict 
the path a ball would take after it was clipped from a 
swinging pendulum. Participants’ predictions were 
tested in three ways: (1) drawing the path of the ball, (2) 
positioning a bin to catch the ball after it was released, 
and (3) cutting the ball free at the appropriate time so 
that it would land at a specified location. Results from the 
first task replicated previous findings that people often 
make idiosyncratic errors when drawing the path of the 
ball. However, performance on the latter two tasks 
revealed a different pattern of errors—participants’ 
biases were less idiosyncratic and more consistent with a 
correct application of Newtonian mechanics. Other work 
has shown that in a variety of scenarios, people can be 
highly accurate and precise when executing actions on 
falling objects (Zago & Lacquaniti, 2005). People also 
perform better at judging how a liquid will behave in a 
container when asked to imagine the action of tilting the 
container rather than just giving a verbal description 
(Schwartz & Black, 1999). It may be the case, then, that 
the implicit physical inferences that support action tap 
into knowledge separate from that which we use to explic­
itly describe or diagram the workings of physical systems. 
When trying to catch the ball cut from the pendulum, 
people may place the bin in the correct position even 
without an explicit understanding of why the ball should 
end up there. Other studies using three-dimensional 
computer-generated stimuli or videos of object interac­
tions have also found more accurate physical inferences 
than similar studies that used two-dimensional or sche­
matic stimuli (Flynn, 1994; Hamrick, Battaglia, Griffiths, 
& Tenenbaum, 2016). The availability of naturalistic cues 
to the geometry and material properties of objects may 
be another factor that promotes access to implicit (and 
more consistently Newtonian) physical knowledge. The 
errors that people make when explaining the workings of 
physics nonetheless remain intriguing (Why would 
implicit and explicit physical predictions draw on distinct 
knowledge?), but they do not reflect a limit on our ability 
to make accurate predictions in the real-life scenarios 
where we use physical inferences to guide behavior.

If we can make accurate, approximately Newtonian 
physical predictions in at least some circumstances, 
what mental functions support this ability? One pro­
posal is that we possess a mental “intuitive physics 
engine” that carries out simulations of physical 
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implicit physical inferences that we carry out in daily 
life, these two facets of physical cognition may draw on 
some common brain machinery.

The brain regions recruited for physical inference 
appear to largely overlap with those commonly impli­
cated in action planning and tool use (Gallivan & 
Culham, 2015). This raises the possibility of a close 
relationship between action planning and naive phys­
ics, and neuropsychological findings from patients 
with apraxia reinforce this notion. Apraxia refers to a 
pattern of impairments following brain damage that 
affect the ability to perform meaningful gestures and 
execute the appropriate actions for particular tools. 
While apraxia has often been framed as a motor condi­
tion, there is evidence that the core impairments in 
apraxia are in mechanical reasoning and action plan­
ning, rather than motor execution per se. When patients 
with apraxia are presented with novel tools, they show 
difficulties not only in executing appropriate actions 
with the tools but also in selecting the appropriate tool 
for a task based on its geometry (Goldenberg & Hag­
mann, 1998). The latter task requires mechanical rea­
soning but not fine-scaled motor execution. Lesions 
that result in impaired mechanical reasoning in apraxic 
patients fall in the same frontal and parietal regions as 
those implicated in physical reasoning in healthy par­
ticipants (Goldenberg & Spatt, 2009).

The precise degree to which physical inference and 
action planning engage a common set of brain regions 
remains to be established by studies that measure both 
simultaneously. But to the degree that the two func­
tions recruit common brain resources, why might the 
cortical systems for physical prediction and action plan­
ning be closely linked? Perhaps the most fundamental 
reason is that action planning inherently requires phys­
ical prediction. In order to plan appropriate actions, we 
must have a mental model of how objects will behave 
when we interact with them, taking into account physi­
cal variables such as the objects’ shapes, sizes, and 
material properties. Indeed, there is evidence that 
many such variables are encoded within the frontal and 
parietal regions described above. Premotor cortex 
encodes object mass, both when preparing to lift an 
object (Gallivan, Cant, Goodale, & Flanagan, 2014) 
and when observing object interactions in the absence 
of any intention to perform an action (Schwettmann, 
Fischer, Tenenbaum, & Kanwisher, 2018). The aIPS 
encodes visual and somatosensory information about 
object shape, size, and orientation (Murata, Gallese, 
Luppino, Kaseda, & Sakata, 2000; Sakata, Taira, Murata, 
& Mine, 1995). The PMd, the SMA, and the anterior 
parietal cortex also show tuning to the gravitational 

the canteen would be impractical, and there is no need 
for the level of detail that a simulation would provide. 
In scenarios like these, commonsense physical reason­
ing may be achieved through knowledge-based analysis 
that relies on a large number of rules, rather than 
mental simulation (Davis, Marcus, & Frazier-Logue, 
2017). Ultimately, it is likely that we draw on some com­
bination of qualitative reasoning and dynamic simula­
tion to form physical predictions. The conditions under 
which each is used, and the limits of each in terms of 
precision, processing speed, and adaptability to novel 
scenarios, will be important to flesh out in future 
research. Regardless of exactly how precise our naive 
physics system is or what algorithms it is built on, there 
is no doubt we possess some fundamental physical 
knowledge that allows us to survive and engage with 
the world. This raises the question of what neural 
machinery underlies our physical-reasoning abilities.

A Physics Engine in the Brain

Research to identify and characterize the brain regions 
that support naive physics is in the early stages, but 
emerging evidence points to a set of regions in the fron­
tal and parietal cortex. A recent functional magnetic 
resonance imaging (fMRI) study (Fischer, Mikhael, 
Tenenbaum, & Kanwisher, 2016) contrasted brain activ­
ity from tasks that required physical inference (predict­
ing the direction that an unstable tower of blocks would 
fall or predicting the trajectory of a bouncing billiard 
ball) with tasks that did not require physical inference 
but were otherwise matched on a host of factors. This 
study revealed a set of brain regions that are reliably 
engaged when people observe and predict the unfold­
ing of physical events: bilateral frontal regions (dorsal 
premotor cortex, or PMd, and the supplementary 
motor area, or SMA), bilateral anterior parietal regions 
(postcentral sulcus, or PoCS) and the anterior intrapa­
rietal sulcus (aIPS), and the left supramarginal gyrus 
(SMG). Neuroimaging studies using textbook-style 
tasks have implicated similar regions in more explicit, 
abstract physical reasoning. A study in which subjects 
were asked to solve mechanical-reasoning puzzles 
found that a similar frontoparietal network of regions 
was engaged ( Jack et al., 2013), and another study on 
the representation of abstract physics concepts (e.g., 
gravity, potential energy, and wavelength) found infor­
mation related to these concepts in premotor and ante­
rior parietal areas, among others (Mason & Just, 2016). 
Thus, although the behavioral work discussed above 
has established important distinctions between 
explanation-based physical problem-solving and the 
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Ventral Stream Contributions to Naive Physics

While the work discussed above implicates dorsal corti­
cal regions in carrying out physical predictions, the 
ventral temporal cortex may play a complementary 
role, computing the object and scene attributes that 
form the basis for such predictions. In both humans 
(Cant & Goodale, 2011; Hiramatsu, Goda, & Komatsu, 
2011) and monkeys (Goda, Tachibana, Okazawa, & 
Komatsu, 2014), information about objects’ material 
properties is encoded in the ventral visual pathway. 
While early visual cortex encodes image-level details 
that serve as cues to objects’ materials, higher-order 
areas (the posterior inferior temporal (IT) cortex in 
monkeys; the posterior collateral sulcus/fusiform gyrus 
in humans) represent more abstract information about 
dimensions, such as hardness, roughness, and elastic­
ity. The same higher-order ventral regions encode 
object weight when it can be inferred from surface-
texture cues (Gallivan et  al., 2014). These material 
representations can be modified by visuohaptic experi­
ence (Goda, Yokoi, Tachibana, Minamimoto, & Kom­
atsu, 2016) and thus may carry supramodal information 
about objects’ material properties to support functions 
like physical prediction and action planning. Ventral 
representations of scene elements may also factor 
importantly into physical prediction—for example, by 
signaling the orientation of gravity. Humans use visual 
information (in addition to vestibular input) to infer 
the direction of gravity (Dichgans, Held, Young, & 
Brandt, 1972), and Vaziri and Connor (2016) have 
found that individual neurons in macaque anterior IT 
cortex are tuned to gravity-aligned scene elements, 
which may help establish a gravitational reference frame 
in which to carry out physical predictions.

It remains to be seen whether the object and scene 
information carried in the ventral visual stream con­
tributes directly to the implicit physical predictions 
that guide our behavior in everyday life. While a variety 
of information from the ventral stream would, in 
principle, be useful for physical prediction, such infor­
mation may also be present in a more flexible and rap­
idly accessible format in the dorsal stream ( Jeong & 
Xu, 2017; Vaziri-Pashkam & Xu, 2017). In particular, 
object representations in posterior parietal cortex that 
support visually guided action may support physical 
prediction as well. If these object representations 
existed solely for the sake of guiding motor behaviors, 
one might expect them to maintain strict viewpoint spec­
ificity (Craighero, Fadiga, Umiltà, & Rizzolatti, 1996) 
since different object orientations require different 
actions ( James, Humphrey, Gati, Menon, & Goodale, 

constant, responding most strongly when viewing a fall­
ing object that accelerates at a rate consistent with natu­
ral gravity (Indovina et al., 2005). These variables that 
are crucial for anticipating objects’ behaviors when pre­
paring actions are the same as those we draw on for 
physical prediction more broadly.

As a result of the interdependence between action 
planning and physical inference, the two may share cor­
tical machinery in a manner analogous to the relation­
ship between the spatial attention and eye movement 
systems (Corbetta et al., 1998). Just as covert attention 
can be deployed off-line from the actual execution of 
saccades, predictive models in the action-planning sys­
tem may run off-line from motor execution to simulate 
the outcomes of physical interactions (Schubotz, 2007). 
It is critical to note the distinction between this idea and 
motor simulation theories of perceptual and concep­
tual processing. Motor simulation theories hold that in 
a variety of domains, such as object recognition, lan­
guage processing, and action understanding, covert 
engagement of the motor system—imaging oneself 
acting—is required in order to perceive and interpret 
information in those domains. Theories of this sort 
have been refuted by empirical evidence showing that 
disruptions of the motor system do not reliably lead to 
impairments in perceptual or conceptual processing 
(Mahon & Caramazza, 2008; Vannuscorps & Car­
amazza, 2016). The account of physical reasoning pre­
sented here does not invoke the notion of imagining 
one’s own actions as a means of understanding physical 
behavior. The idea is simply that the same physical pre­
diction mechanisms that support action planning may 
be called upon to subserve physical reasoning more 
broadly. For example, imagine picking up a bag of torti­
lla chips and a jar of salsa while grocery shopping. With­
out much thought, you use a soft grip to handle the 
chips—any more pressure would crush them—but a 
firm grip to pick up the salsa so the heavy jar won’t slip 
out of your hand. The same physical inference mecha­
nisms that informed these nuanced actions could alert 
you to the likelihood of the chips being crushed when 
you see the checkout attendant pack the salsa on top of 
the chip bag. Thus, the limits of motor execution need 
not constrain the kinds of physical behaviors that can be 
predicted using resources shared with the action-
planning system. Interactions between objects that are 
out of reach may still be understood using the same 
predictive models that would be applied if the objects 
were targets of action. A possible reinterpretation of the 
mirror neuron responses implicated in motor simulation 
is that they reflect predictions regarding the physical 
outcomes of observed behaviors.
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2002). Instead, these dorsal object representations con­
tain viewpoint-invariant information (Jeong & Xu, 2016; 
Konen & Kastner, 2008), suggesting they could support 
a broader range of abilities, such as tracking the stable 
properties of objects as they move and interact.

Conclusions

Over the past several decades, a flurry of research has 
led to major strides in understanding the computational 
and neural basis of our naive physics abilities. Still, many 
key questions remain. Beyond allowing us to predict the 
behavior of objects and plan actions accordingly, how do 
our physical intuitions shape the way we interpret and 
engage with the world? Research in computer vision has 
suggested that naive physics may have a pervasive role 
even at the earliest stages of visual processing, helping to 
segment the surfaces and objects in a scene (Zheng, 
Zhao, Joey, Ikeuchi, & Zhu, 2013). How does our naive 
physics system interact with other aspects of cognition? 
Recent work has shown that physical cognition is disso­
ciable from social cognition (Kamps et  al., 2017), and 
the two may even be in a mutually inhibitory relation­
ship, limiting our ability to use both in conjunction 
( Jack et al., 2013). Addressing these broader questions 
will be key to understanding how our physical intuitions 
shape our everyday experience.
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